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Direct Calculation of Metric Entropy from Time Series
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In this paper we develop an algorithm which allows for a direct com-
putation of the metric entropy from time series data. The approach is
based on the ariginal definition and enables us to use fine partitions and
long sequence lengths. There is a discussion of the underlying theory,
followed by an explanation of the computational approach, including
methods of partitioning the data, computing the seguentiat dis-
tributions, and compactifying to reduce memory requirements. The
approach is tested against periodic, random, and chaotic data for which
the metric entropy is known analytically, Then the technique is applied
tor the Henon, lkeda, Rosslar, Lorenz, nivd Mackey Glass atiractors. Tho
1esults compare well with those lound by other techniques.  «© 1993

Acadamic Press, Ine.

I. INFRODUCTION

When studying dynamical syslems, it is possible to
classify them into one of three categories: periodic/quasi-
periodic, chaotic, or random. One important quantity
which distinguishes between these categories is the metric,
or Kolmogorov, entropy which will be denoted hy K
throughout this paper. The usefulness of the entropy arises
from the fact that K=0 Jor a periodic/quasi-periodic
system, 0 < K < o for a chaotic system, and K — oo for a
random system,

Numerous researchers have considered entropy calcula-
tions. However, it has been problematic to calculate the
entropy directly from the original definitions given in
[ 1, 27, since the calculation requires observing the dynami-
cal system over long periods and imposing on the system a
partition which must then be varied to take the supremum
over all partitions. Further, for an initial partition of size N,
the dynamical system over time will effectively increase the
number of partitions so that there will be N” pactitions after
h time steps. In 3] Curry caleulates the entropy of the
Henon attractor using an initial partition ol only two bins
and concludes that the finer partitions that would be
required for greater accuracy lead 1o a level of complexity
that is beyond present computing capabilities. The dif-
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ficulties associated with this calculation led Grassberger and
Procaccia |47 to develop a technique to calculate a lower
bound to the entropy based on a correlation function. The
idea of generating a symbol sequence is developed in [5]
by Crutchficid and Packard, and a similar approach
developing a representation of the Lorenz system as a one-
dimensional Ising model is developed by Shimada in [67]. In
this paper, we will give a technique for calculating the metric
entropy directly [rom the definition for finer partitions and
longer time perieds than have been previousty usced. Certain
new problems arise which will be discussed as well.

The paper is divided into several sections. The next
scction gives a bricf introduction to the theoretical under-
pinnings ol the entropy of a dynamical system. Following
that we will describe in Section HI the computational
approach which allows us to overcome the inherent
difficulties associated with the calculation. In Section IV
resulls will be given for some test systems where analytical
values for K are known, Then Section V will give results [or
several dynamical sysiems which have been studied in
the literature. The lust section will give conclusions and
suggestions for further study,

1. THEORETICAL BACKGROUND

The calculation of the entropy makes use of several
concepts from information theory. In this context, one
considers the probabilities of certain events occuring,
designating the probability of event i by p,. Then the
amount of information gained by a measurement on the
system is given by {7]

f=-3% p;inp,. (n
This definition is extended to sequences of events iy, iy, ..., Iy,
by taking the probability that this sequence occurs with
respect to all other sequences to be p(i,, ..., £,), giving

I,=— ' Z Py o i) 100 UL, g 1), (2)
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When this concept is applied to dynamical systems, one
must consider a partition of phase space, B, where the
elements of the partition are little boxes or bins, f§; (we will
generally refer to a one-dimensional partition as a bin, and
for higher dimensional partitions they will be called boxes).
The events become simply the presence of an orbit of the
dynamical system in a particular box, f, at a given time, 1.
This bears further explanation. Let X{¢} define the evolution
of the dynamical system in phase space, which can be finite-
dimensional or infinite-dimensional. If the system is
continuous, consider a sequence of sampies at reguiar time
intervals A¢; if it is discrete, take the discrete values as the
samples. In either case, one can consider a time series, X(¢,),
of samples. Now it becomes clear how to specify an event,
l.e., the sample X(¢,} € f; for some 1, and some box f,. If the
dynamical system satisfies the properties of ergodicity
{which essentially means that time averages are equivalent
to spatial averages [8]) one can simply observe the dynami-
cal system over a (sufficiently} long period to determine the
asympiotic probability distribution of the events. This
allows for the calculation of the information content of the
asymptotic distribution, where p, — p(§;) = p(X(¢,) € B;) V1,
is the probability that the dynamical system visits the box §;
over time and the information becomes a function of the
chosen partition of the phase space. The result analogous to
(1) becomes

1(By= =3 p(B)In p(B)). (3)
B:

where the sum is taken over all of the elements of the parti-
tion. Similarly, it is possible to study sequences of events for
dynamical systems by defining the joint probability that the
dynamical system visits the sequence of boxes f,, f5, - B,
at times f;,1,, .., #,, respectively, to be p(B,, 8., ... B)-
Here the numbering of the f’s from 1 to & is merely a
convenience, and is meant to indicate an arbitrary sequence
of b boxes. The result that follows from {2) is

1,(B)= — (4)

Ao

where the sum is taken over all possible sequences of length
b. Tt is also useful to note that when the probability of a
given sequence is 0, we have as a limit pIn p — 0, so there
is no contribution from such sequences to the sum. The
maximum occurs when all of the sequences are unique and,
hence, have equal probabilities. We will say that an X%
separation level has been reached when the number of dis-
tinguished sequences is equal to X% of the total possible
number of sequences for finite data. Before going on to
define the entropy, it is important to observe that the defini-
tion given by (4) ts dependent on the chosen partition, the
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length of the sequences, and, for a continuous system, the
sampling interval.

In this study of dissipative dynamical systems, we will
consider only the attractor on which the long-term evolu-
tion takes place. Information on the technical subtleties in
the definitions of attractors can be found elsewhere [5].
The attractors that arise for periodic systems are either fixed
points (e.g., for a damped pendulum} or limit cycles, which
arc closed loops in phase space (e.g., for an undamped
pendulum); similarly for quasi-periodic systems, where the
attractor is an a-torus because the » closed oscillatory
variables have incommensurate periods. Chaotic systems
generally exhibit attractors that lie in a bounded, finite-
dimensional subset of phase space and have the property
that they generally evolve on a set which has fractional
dimension. Related to this is the property termed sensitive
dependence on initial conditions, which means that the
orbits of two points initially close in phase space will diverge
over time. Truly random systems would in general exhibit
attracting sets which fill the available phase space.

The definition of the metric entropy, first proposed by
Kolmogorov [1] and later clarified by Sinai [2], relies
heavily on the information-theoretic concepts described
above. The actual definition makes use of an invariant
ergodic probability measure, p, on the phase space of the
dynamical system. These matters are discussed at great
length elsewhere, notably in Eckmann and Ruelle [9], as
well as in the expanded version of this paper [22]. Given an
attractor 4 with measure u, contained in some bounded
n-dimensional subset M" of phase space, we can see that a
partition B on M" will induce a partition & on 4. We then
associate the g-measure of a set ¢,€® in 4 with the
probability that the dynamical system visits the partition f,
50 u(g;) = p(B,;). This extends to sequences through refine-
ment of the initial partition @ and the equivalent extension
in terms of probabilities of sequences. The entropy is defined
{[1,27; see also [11]) as the supremum over all partitions
and all time intervals 47, of the sequential information (4) as
the sequence length goes to infinity, with a normalization
factor 1/b At, giving

K= sup[ lim

B A LO—»

xlnp{,B,,,,,,,B,g,))/b At}, {5)

where the sum is over all sequences of length b. This can be
written in another form which will be useful in some
situations,

K=sup [ lim (7, ,(B)—1,(B))/41],

B, At b=

(6)

where we have used (4) to simplify the notation.
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Some of the inherent difficulties in computing the entropy
from (5) or (6) have been discussed in the Introduction. It
1s immediately obvious that the limit as the sequence length
goes to infinity is intractable, since any time series data must
be finite. For an experimental sitvation, the supremum over
the sampling interval ¢ is generally inaccessible, since the
sampling rate is chosen at the time of data collection. The
partitioning of the sampled data can be varied, but it is cer-
tainly only reascnable to do the calculation for a few dif-
ferent partitions. With these provisos in mind, we must hope
that the values for K which are calculated are asymptotic to
the correct value within a reasonable number of time steps
and for partitions which are not too fine.

For certain special dynamical systems, known as
Axiom A systems [ 12], there is in fact a simple initial parti-
tion, called the generating partition, which produces the
exact value for K (see, e.g,, the discussion in [3]). In the
absence of any knowledge of the availability of a generating
partition for a dynamical system, we can only take finer par-
titions to better approximate the generating partition, since
a subdivision of a generating partition is generating. As was
pointed out in [9, 3], the use of finer partitions improves
the accuracy of the estimate of K. Of course, there are some
restrictions to this, since any finite number of distinct
samples can always be placed into separate boxes. If these
boxes are taken to be the partition, then the system will
be in its maximum information state for that number of
samples, and it will not be possible to calculate the entropy
accurately. This assumes that we have a strange attractor or
a’ random system, since a periodic/quasi-periodic system
can have identical points. The net effect of this restriction is
that the size(fi) » 0 limit 15 not available, where size(f)
refers to the physical size of the boxes in our partition.
Further, as the sequence length is increased, the initial parti-
tion is refined, so for finite data the situation can arise where
after several time steps each sequence in the sample data
resides in its own box in the refined partition. In fact, it will
be shown later that the values of K calculated for a finite
number of samples begin to lose accuracy when more than
20% of the sequences have been separated. This concept of
“relatively infinite” sequences and samples presents only a
slight problem because it can be easily resoived by consi-
dering segments of the samples. This will be expounded
upon below.

In the computations that will be described, the dynamical
systems which are considered were allowed to evolve for
fairly long time periods. The computations were performed
in single precision on a BBN GP-1000 parallel processor,
with 16 nodes available {each based on a Motorola 68020
processor ). The code runs efficiently in serial, although the
distributed memory was used. This will be discussed in more
detail later. The difference equations were simply allowed to
evolve, and the differential equations were integrated using
a fourth-order Runge-Kutta method with integration inter-
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vals on the order of 0.01. Generally, several integrations
were performed before a sample data point was recorded in
the data set, with the sample interval dependent on the
length of a “characteristic time™ [13] for the system, where
we follow {137 by using this to mean either the mean time
between intersections of a Poincaré section or the time
associated with a dominant feature in the power spectrum.
In all cases the number of data points was large enough to
“flesh out” the attractor. The study was limited to one of the
dimensions from the data points for the multi-dimensional
systems, although the program can be run on the full multi-
dimensional data set. We considered sequences starting at
every point in the data set to determine the global behavior
on the attractor. In fact, roundoff error and sensitive
dependence imply that the points in the data set can be
taken as independent starting points, so this is a valid
approach.

III. COMPUTATIONAL APPROACH

The calculation of the entropy presents several difficulties
for numerical studies. These can be attributed to problems
associated with partitioning of the data and keeping track of
the sequences. For a point that goes through the sequence
of bins B, fi,, .., B;, the sequence can equivalently be
considered as a point in euclidean space of b dimensions by
using the bin labels to create a h-vector. Here it becomes
obvious that for an initial partition into N bins, there are N”
boxes in the equivalent b-dimensional space. For fine parti-
tions it is evident that as » grows a memory overflow would
occur in even a large computer if every b-dimensional box
were stored, so it becomes imperative that some compac-
tification scheme 1s included with the sequencing. Below we
set out an approach with several sections: A, Partitioning
the data; B. Sequences and compactification; C. Proba-
bilities and information, D. Entropy.

Certain conventions will be employed to make the
presentation clear. Program statements will be written in a
generic language which should be self-evident. Loops will be
indicated by a “for i =start to i=finish” scheme, where we
may use < instead of =as appropriate. Nested loops will
have the inner loop indented and will, of course, use a dif-
ferent indexing variable. When “if/then” types of statements
are used, the antecedent will be separated from the conse-
quent by a comma. For arrays the convention has been
chosen that when a Greek index is used, e.g., A[a], we are
referring to the array itself, and when a Latin index is used,
e.g., A[i], we are referring to a particular element of A[a].

A. Partitioning

For computational efficiency, it is imperative that the
partitioning of the data be accomplished quickly and
efficiently. We will assume that all of the samples of the
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dynamical system have been stored in a vector, Datale], of
length npts, and npes is the number of starting points to use
in the sequencing process. To perform the partitioning, we
have taken advantage of the mask and shift operations
available in the C programming language. To use this
capability, we must convert the data into a representation of
the sample values as integers. Since the attractors of interest
are bounded, this is possible by adjusting the range of the
data. If the input data lies in the range [X,q, Xma: ], the first
step is to subtract x_;, from every element of Data{«]. This
shifts the data so that it is in the range [0, X, 00 — Xmin -
Now scale the data by an appropriate muitiplicative factor
so that it covers the range [0, MaxInt], where MaxInt is the
largest integer the computer can represent. Finally, set the
adjusted elements of Data[a] equal to the elements of an
integer vector, Bin[x].

The clements of Bin[®] are integers which exhibit the
same relative proportions as the initial input data. Conse-
quently, any partition of the original data is equivalent to a
partition of the data in Bin[«] stmply by scaling the parti-
tion in the same manner that the original data was scaled.
It is evident that this process has no effect on the calculation
of the entropy, since the entropy depends solely on the
sequence of boxes through which a point moves, and
this is equivalent under the indentification of the original
data with the scaled data. The identification gives an
isomorphism between the initial data and initial partition,
and the scaled data in Bin[«] and the scaled partition; the
entropy is invariant under the isomorphism.

Since the data in Bin[«] are integers, we can operate on
them using the mask and shift capability. The mask process
simply calculates a logical AND between the bit string
representing an element of Bin[a] and a programmer-
specified bit string, The shift function simply right-shifts a
specified bit string by a certain number of places. So, if the
data in Bin[«] is to be partitioned into 2" bins, mask off all
but the leftmost # + I bits, then mask off the sign bit, leaving
only the n most significant bits representing the data vaiue
(this assumes, of course, that the most significant bits are on
the left). The remaining values are then shifted to the right
until they are right justified. The numbers that remain in
Bin[ 2] now lie in the range [0, 2" — 17]; consequently, they
can be interpreted as labels of the bins in the initial
partition.

The partitioning has now been accomplished. It becomes
a simple task to calculate the initial distribution of the data
over a partition of N = 2" bins. By creating a vector Dist[ §]
of length N, the distribution can be calculated by taking the
elements of Bin[«] as the indices in Dist[ 7] and incre-
menting the elements of Dist[8]; ie, Dist[Bin[{]] =
Dist[Bin[/]] + 1, Vi, where the right-hand side is meant in
the usual programming sense of incrementing the previous
value of Dist[Bin[i]] by 1.

The partitioning process described above is quite casily
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computed, and takes very little CPU time. The elements of
Bin[«] are all taken to be starting points of sequences, so it
is clear that to determine the sequence of bins followed by
a particular starting point, all that is necessary is to look at
the elements of Bin[a] following that starting point. To
calculate a sequence probability p(8,, #,. .., B}, all we
have to do is count the number of times that the particular
sequence of numbers f§,, £,, ..., B, appears in Bin{«]. This
is not as simple as it appears, since it requires keeping track
of N* data points, which soon overwhelms the memory of a
computer. The resolution of this problem is discussed in
Section I11.B below. )

Before going on to discuss sequencing and compactifica-
tion, it is worthwhile to note that the use of binary parti-
tioning does not place any restriction on the freedom to
choose a partition. By adjusting the scaling factor to leave
certain bins in the [0, MaxInt] partition empty and by
incorporating a roundoff algorithm in the conversion from
floating point to integer, one can effectively choose any
partition [23].

B. Sequences and Compactification

For the given partition into N bins, it was mentioned
above that a particular sequence of bins 8, §,, ..., , can be
represented by a point in an euclidean space of b dimen-
sions, i.c., on an integral grid Nx ¥ x --- x N, where the
product is taken & times. This simply means that if p
is a point on the A-dimensional grid, with coordinates
(8., B, .., Bp) then B, B.,.., B, represents a possible
sequence of bins through which a point on the attractor
might move in b time steps. Consequently, it would be a
simple matter to tabulate all of the sequences on the attrac-
tor if we could create a b-dimensional array with each
dimension of length N and use the elements of Bin[«]
to index the array and increment the proper positions.
Let such an array be cailed Hist[f,. £, ... f,]. Then
the tabulation is given by Hist[Bin{/], Bin[i+1], ...,
Bin[i+{h—1)]] = Hist[Bin[{], Bin[i+1], .., Bin[i+
(b—1)]1+ 1, where | varies over all npts starting points.
Once this is calculated, the total probabilities can be com-
puted, and hence the information. The problem, of course,
is that this requires N° memory positions. Luckily, many of
these positions have zero entries (corresponding to no such
sequences occurring); in fact, the maximum number of
non-zero entries is npts, since there cannot be more entries
than there are starting points of sequences. This allows us to
compactify the Hist[ ff, y] array at each stage of the com-
putation to minimize the memory requirements.

We will now describe a simple algorithm for compac-
tifying the sequencing information. While there are
probably more efficient approaches, this one has two impor-
tant benefits. First, it requires no more than a fixed amount
of memory and only a two-dimensional array, Hist[ §, y],
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with a maximum size less than or equal to npts x N. Second,
it does not lose the sequencing information, whereas any
algorithm which utilized a sorting routine would have to
overcome the problem of re-ordering and the subsequent
loss of sequences. The algorithm will be described for the
minimum case of a two-dimensional Hist[ 8, y] array, but if
more memory were available it would be a simple exercise
to generalize to higher dimensions.

To begin the sequencing process, create a new vector,
Compress[a], and initialize it so that Compress[i]=
Bin[i], ¥i. Next create the two-dimensional histogram
array Hist[ #, y]. We will also need another variable to keep
track of the number of non-zero positions in Hist[ §, y1; call
it Newcount. Initially we set Newcount = N. The Hist[ f3, ]
array can either be dynamically allocated to its working size
N x Newcount or set to the maximum size of npts x N. The
first step is to increment Hist[f#,y] for two-sequences
(where we introduce the term &-sequence to mean a
sequence of length b) according to

Hist[Bin[i+ 1], Compress[i]]

= Hist[Bin[i + 1], Compress[i]] + 1, {(7)
where 0<i<npts is the range of i. Every two-sequence
increments a particular position in Hist[ 8, y], and identical
two-sequences increment the same position in Hist[ 5, v],
so the Hist[f,y] array represents the distribution of
tWO-sequences.

We now make use of the possibility of interpreting a
two-dimensional artay as a one-dimensional vector (as 1§
generally done in most computers when storing arrays in
memory) by concatenating either over rows or columns.
For example, if A[¢] is an x x § array, then a position in
Al may be labeled by A[4, j]1for 0<i<a, 0£j<p, or
by concatenating over columns as A[j * x4 i], or by rows
as A[i * p+ j]. This property will be used to set up a corre-
spondence between two-sequences and positions in the
Hist[ 8, v] array, where we replace the starting points in
Compress[«] by their relative positions in Hist[ 4, v],
labeled by concatenation over rows. To do this, simply
make the replacement

Compress[i] = Compress[i] + Newcount x Bin[/ + 1]

(8)

for all / in the range 0< i< npts. No information is lost in
this process, since all unique two-sequences produce unique
values for the associated elements in Compress[ o). When
this is completed, Compress[¢] contains the position in
Hist[ 8, y] corresponding to the two-sequences starting at
the associated point Bin[i]. Note that none of the zero
entries in Hist[ 8, y] are reflected in Compress[«], so the
numbers in Compress{« ] do not, in general, come from a
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contiguous interval of integers. In order to minimize the
memory requirements, it is necessary to renumber the
values in Compress[« ], so that if there are p unique values,
they will be renumbered from O to p— 1, with their order
maintained.

The compression process is fairly simple. First, designate
a variable, Newcount, to count the number of nonzero
entries in Hist[ 8, 7]. Then, in one pass through Hist[ #, y ],
replace the old value of Hist[, j] with the current value of
Newcount and then increment Newcount. This gives simply

RowLength = Newcount
Newcount =0
fori=0toi< N
for j=0toj< RowLength
if Hist[7, j1=>0,
then Hist[4, j 1= Newcount AND
Newcount = Newcount + 1

At the end of this step, the nonzero entries in Hist[ 5, y]
represent their relative orders of appearance in Hist[§, y].

Now the compression can begin. The numbers in Com-
press[a] represent the old bin numbers previously in
Hist[f, y1, but we now replace them with the ordered
numbers placed in Hist[ 8, y | in the last step.

fori=0toi<npts
column = Compress(i ] mod RowLength
row = Compress[/]/RowLength
(Comment: integer divide)
Compress[i] = Hist[row, column ]

which results in the elements of Compress{a] being
numbered from 0 to (Newcount — 1).

At the next stage of the calcuiation, when we want to
consider three-sequences, the working size of Hist[f, y]
need only be N x Newcount. The Compress[a] vector again
holds the correct numbers to allow for the use of the
Hist[ 8, v} incrementing routine (7), where the pext value in
the sequence is selected {rom Bin[«], ie., Bin[i+2]. This
process continues recursively, where for b-sequences we use
Bin[i +(#—1)]in (7) and (8) and the compressed values of
Compress[a]. Note that if the allocation of Hist[8, y] is
dynamic within the sequencing loop, it is necessary to free
the reserved memory space before going on to the next step.

C. Probabilities and Information

After going through the b-sequence compression loop, the
Compressfa] vector contains values that uniguely identify
the h-sequences followed by the starting points. Conse-
quently, to calculate sequential probabilities all that must
be done is to tabulate the relative frequencies of occurrence
of the different sequences. This can be done simply by using
the elements of Compress[a] as indices to increment posi-
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tions in a probability vector. So, create a vector, Prob{a],
of length Newcount {since that i1s the number of unique
values in Compress[«]) and increment the elements as
below:

fori=0toi<npts
Prob[Compress[i]] = Prob[Compress[i]]+ |

When the incrementing is completed, it is necessary to nor-
malize the probabilities so the total sum is 1, so normalize
by computing

for i=10to i < Newcount
Prob[i] = Prob[i]}/npts

Once the probabilities are computed, it is an easy task to
compute the information. :

The calculation of the information for A-sequences
follows from (4}. This is given in a loop by

Info=0
for i=10to i < Newcount
Info = Info + Prob[i] * ln Prob[{]

where Info i1s the variable representing the information.
From (4) it is evident that the result of the loop calculation
above must be multiplied by — 1, so the last step is to take

Info=(—1}« Info.

At this stage the information content of #-sequences has
been computed. It is now possible to continue on to
calculate the information content in the (b + 1)-sequences
by keeping Compress{a] and the value of Newcount,
clearing Hist{ ff, ], and looping back through the opera-
tions in Sections LB and I11.C above,

D. Entropy

All of the above calculations were done for a given parti-
tion #. Bearing in mind the provisos mentioned in Sec-
tion 11, it is useful to calculate an estimate of K as a function
of B, call it K(B), for the partition B and sampling interval
At of the input data. To do so, we use (5) or (6) and leave
out the supremum over B and A:. From the information
computations described above, it is possible to plot a graph
of information vs sequence length. In theory, for an infinite
amount of data, this graph should be asymptotic to a line,
the slope of which corresponds to the entropy. However,
with finite amounts of data this is not the case and, as was
discussed in Section II, we find that after a certain number
of time steps the information graph begins to approach the
maximum information state for the number of sequences
under consideration. As will be seen in the next section, this
causes the graph to fall off from the line defining the
entropy, approaching the slope = 0 state near the maximum
information. In certain situations, notably the difference
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equations, there tends to be a noticeable linear region before
the failofl toward maximum information, and in this case we
will simply plot a best-fit line through the points in the
linear region to estimate the entropy. This corresponds
more to the definition (5). For the systems based on dif-
ferential equations, there is not such a distinctive linear
region, 50 we use (6) to estimate K.

The computational requirements of this approach can be
calculated easily. Subtracting the minimum of the data,
scaling the data, and masking and shifting the data all
go as Q(nprs). The one-dimensional histogramming, ie.,
incrementing Dist[ f7], requires just one pass through the
data, so it is O{npts). Incrementing the two-dimensional
array Histf 8, y] is likewise accomplished in O{npts). Then,
renumbering Compress[a] requires one pass through
Hist[ 8. ] which has N x Newcount elements, where N is
fixed by the choice of the number of initial bins and New-
count can never grow larger than npts, although the calcula-
tion should be cut off soon after Newcount > 0.20 = npts, as
will be discussed later. For N < npts, the renumbering
is O(npts), or for larger N, O(N xnpts). Incrementing
Prob[a] requires npts operations and calculating Info
requires 3 * Newcount operations. Consequently, this
implementation is accomplished in Q{npts) or QN x npts)
operations.

The memory requirements involve only one large array
Hist[ f, y]. all others being vectors of lengths < npts. The
working size of Hist[f, y] is Nx Newcount and cannot
grow beyond its maximum size of N x npts; actually, if the
calculation is cut off soon after the 20 % separation level has
been reached, then the size of Hist[f, y]1s < Nxnptsx A,
for 4 ~0.20.

The program was run on a BBN GP1000 parallel pro-
cessor with 16 processing nodes. The code runs on only one
node as a serial program; however, it was found that scat-
tering the Hist[ 8, ] matrix over the memory of different
processors sped up the processing by reducing memory
contention. While this was done using a utility function for
parallel processing, it can be done in C by simply allocating
each row of the matrix separately with an auxilliary vector
holding pointers to the first point in each row, making sure
that the rows are separated in memory.

IV. TEST CASES

To test the approach described above, we will consider a
periodic system, a random system, and a chaotic system
with known entropy. The periodic system will be repre-
sented by sinusoidal data. The random system will be
represented by a quasi-random number generator of period
231 _ 1. The known chaotic system will be represented
by the logistics map with K=In2. We will refer to the
imaginary curve through the points in the information vs
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sequence length graph as the progression curve. In all cases
we will generate more values than our sample siZe and,
since each data point in the sample is a starting point of a
sequence, the extra values allow us to look at sequences
extending beyond the end of the sample.

The results for the periodic system are based on a
sinusoidal system, where the period was 24 time samples in
length and a total of 10° values were recorded. The initial
partition was 64 bins. Using a 50,000-point sample and a
99,900-point sample, the asymptotic slope was zero for
both, so K =0. At no point did either system approach its
maximnm information state.

The resuls for the random system are based on a quasi-
random number generator which is optimal for a 32-bit
machine. In all, 5 x [0° random numbers were generated.
Using three samples of 50,000, 99,900, and 499,200 points
taken from the 5 x 10° random numbers generated, it was
found in all cases that the system approached the maximum
information state within essentially one time step after the
number of available boxes of the partition became greater
than the number of points. Hence, the slope does not
converge and increases as the sample size increases. This is
consistent with a truly random system which would have
the slope increasing without bound as the sample size
increases.

The behavior of the chaotic systems is between the two
extremes of periodicity and randomness, and the informa-
tion vs sequence length graph in Fig. 1 exhibits some
properties of both. The system under study is the logistics
map

x(r+11=R*x[1]* (1 —x[1]),

where the case R=4 is known to have entropy K=In 2.

Logistics Map - parlition = 64

ino - npts = 99300

10 npts = S0000

10 20
sequence length
| SRR -
FIG. 1. Information vs. sequence length graph for the logistics map
using a 64-bin initial partition on samples of 50,000 and 99,900 points.
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Again 10° values were generated, from which a 50,000-point
sample and a 99,900-point sample were taken. For the case
when the initial partition is 64 bins {Fig. 1), we see that
there is initially a sharp rise in the information vs. sequence
length graph, followed by a nearly linear region, and then
the plots approach their maximum information states. At
this point the slopes fall off from the asymptotic line, which
has known slope In 2. However, it is also evident that as we
take a larger sample, the information vs. sequence ilength
graph follows the “correct” asymptotic line for a longer
sequence length. This has been verified for intermediate-
sized sampies as well. Consequently, for a given sampie size
the graph will at first rise sharply, then it will follow the
asymptotic line until it is affected by its approach to the
maximum information state. It appears from these and
additional studies that the valid region occurs after the
initial steep risc and before 20 % of the sequences have been
separated. In the previous section, the variable Newcount
represented the total number of sequences that had been
separated, so the 20% level is easily monitored. For the
graph in Fig. 1 there is a distinct linear region between
sequence lengths 3 and 6, so to estimate the entropy we have
calculated the best-fit line in this region. This is equivalent
to using (5) to compute the entropy. The slope of the best-fit
line gives 0.683608 + 0.007905, and the actual value K=
0.6913 is in this range, so the technique is quite accurate.
These results are virtually independent of the chosen
partition.

V. OTHER CHAOTIC SYSTEMS

in this section, the results for the entropy calculation for
the Henon, Tkeda, Rossler, Lorenz, and Mackey-Giass
attractors will be given. The first two systems are mappings,
while the others are generated by systems of differential
equations. The results are summarized in Table I, and a plot
of the information versus sequence length graph will be
given for the Henon, representative of the mappings, and for
the Rossler, representative of the systems of differential
equations. We will give some guidelines which help to deter-
mine if the results of a calculation represent a decent
approximation to the long-time limit for X. All of the
systems exhibited the same chaotic properties as the
logistics map in the previous section regarding sample size
and falioff towards the maximum information state at the
20% separation level. Consequently, we will choose a fixed
sample size of 99,900 points taken from 10° generated values
and report results for various partition sizes,

A. Henon Attractor

The Henon attractor [147] is a simple two-dimensional
system. Three different initial partitions were used, corre-
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TABLE 1
System Initial partition Entropy
Henon 12 0.449374 1 0.009192
64 0.444722 + 0.011422
128 0.459532 4 0.014949
Tkeda n (.375503 + 0010519
64 0.384369 £+ 0.012088
128 0.397354 + 0.016012
Rossler 8 (.1022145
16 0.125425
32 0.1572875
Lorenz 8 1.0239763
16 1.1389654
32 1.3786
Mackey-Glass 8 0.0078898
16 0.0107874
32 0.0169141

spending to 32, 64, and 128 bins. The resuits of the calcula-
tion of information vs. sequence length are presented in
Fig. 2 for the three partitions. Note that the initial steep rise
lasts for three time steps, after which the graphs enter a
linear region. For a finer partition the falloff toward the
maximum information state occurs after fewer time steps.
There is also a tendency toward bowing of the progression
curve in the linear region for the 128 bin partition. This is
symptomatic of the partition becoming “too fine.” These are
important considerations when evaluating the entropy, and
their impact will be seen more clearly in other systems. In
this case there is little difference, since the graphs in the
linear region are essentially parallel.

Since the linear region is fairly evident, we calculate a
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best-fit line through the points up to the 20% separation
level. The results are given in Table 1. In all cases the error
is purely statistical, and no attempt has been made to
correct for effects at the tails of the linear region. These
results compare favorably to those in the literature. The
reported numerical estimate from the initial equations is
0.4192 [13, 14]. Grassberger and Procaccia [4] find for the
lower bound K,=0.318 4+ 0.02 from numerical techniques
and K,=0.325+0.02 from time series data, whereas
Curry [3] finds K= 040+ 5%.

B. Ikeda Map

The Tkeda map [15] is also generated by a system of dif-
ference equations. The results of the entropy calculations
are in Table 1. The characteristics of the progression curves
seen earlier in the other chaotic maps were quite evident
here as well. The curves for the 32- and 64-bin partitions
were much closer to linear than for the 128 bin partition. We
attribute this to the 128-bin partition being a bit too fine for
the data.

C. Rossler Artractor

The Rossler attractor [16] results from the evolution
under a system of coupled differential equations. In various
places in the literature, different parameters are used; the
ones used here correspond to those in [13]. The integration
interval was taken to be 0.01s and sample values were
recorded after every 200 iterations. As discussed in [13], the
characteristic time for an orbit to traverse the attractor is
6.07 s, so this implies that we are sampling three times per
traversal. The results for the information vs. sequence length
graph are exhibited in Fig. 3. The initial partitions used in
this case are 8, 16, and 32 bins.

FIG. 2.

Information vs. sequence length graph for the Henon attractor
using 99,900 points and initial partitions of 32, 64, and 128 bins.

Henen Attractor - 99,900 poinls Rosslar Atlracter - 99,900 poinls
[nfo Info
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10 20 1 20
sequence length sequence leangth

FIG. 3. Information vs sequence length graph for the Rossler attractor
using 99,900 points and initial partitions of 8, 16, and 32 bins.
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The Rossler system is a continuous-time system, and it
exhibits some properties that are different from those of the
difference equations. First, in a numerical experiment it is
possible to vary the time interval between taking sample
valies, so it is actually possible to consider different
sampling intervals. Second, there is a much greater tendency
toward bowing of the information vs. sequence length graph
for ail of the systems based on differential equations. The
bowing is very pronounced when the partition is too fine.
This can be interpreted as a coalescing of the initial steep
rise with the falloff toward the maximum information state.
This makes it difficult to discern a linear region. Finally, for
the differential equation systems, it is important to keep in
mind that the long-time limit is the desired result, so the
20% separation level should not be reached before the
system has evolved for a period at least several times longer
than the characteristic time for the attractor.

The graph in Fig. 3 illustrates some of the difficulties with
interpreting the entropy for the differential equation
systems. First, the attractor approaches its asymptotic dis-
tribution of partitions much more slowly than we have:seen
before, since the initial steep rise lasts much ionger. The
graph of the 32-bin progression curve exhibits noticeable
bowing, which is less pronounced in the 16-bin curve. The
8-bin curve gives a nice linear region between about time
steps 8 and 18 (which, in fact, corresponds to the 20%
separation limit). Since it is the long-time limit which is of
interest and since the linear regions are more difficult to dis-
cern, we will use Eq. (6) to estimate the entropy. We wish to
avoid the falloff’ region, so we will take the limit as the
progression curves approach the 20 % separation limit, i.e.,
I, (B) in (6) will be taken at the 20% separation limit,
The limits were taken after 16, 24, and 36 s for the 32-, 16-,
and 8-bin partitions, respectively. The characteristic time to
go around the attractor was =6 s, so the limits were taken
after 2.67, 4, and 6 times around the attractor.

Comparing these results to those reported in the
literature gives some good insight into our technique.
According to the theorem stating that the entropy should be
less than or equal to the sum of the positive Lyapunov
exponents, we can compare our values to the positive
Lyapunov exponent reported in [13], which is equal to
2= 0.09 taken to the base of the natural logarithms. We find
that the best approximation to this value occurred for the
8-bin partition. This is also the partition that produced
the most discernible linear region in the information vs.
sequence length graph, and it also went six times around the
attractor before reaching the 20% separation limit. It 1s
apparent that the finest partition is not necessarily the most
desirable candidate, and it turns out that the most accurate
results are generally derived from the partition that gives the
longest time limit with the flattest linear region. Numerous
other runs were calculated for the Rossler attractor using
varying sample intervals and varying partitions, and the
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entropy estimates were found to be dependent primarily on
the total time before the 20 % separation limit was reached.
The results approached the result in [137] as this time
increased.

D. Lorenz Attractor

The Lorenz attractor [17] is a simple set of differential
equations designed to model convection in the atmosphere,
where the parameters chosen reflect the original ones in
F177]. In this case it is difficult to determine a characteristic
time, so we will consider the average time it takes to loop
through one of the wings in the typical “butterfly” represen-
tation (see, e.g, [13]) of the Lorenz attractor. For the
parameters given here, this time is approximately 0.75s.
The system was again integrated with an integration inter-
val of 0.01 s, and samples were recorded every 35 iterations,
50 this is better than once per loop on average.

The results are in Table I, and the information vs.
sequence length progression curves exhibited the same
characteristics as for the Rossler attractor. There was
slight bowing in the 32-bin progression curve, but more
problematic was the fact that there were very few points in
the linear region before the fall-off toward the maximum
information. For the 32-bin curve there were only two
points in the linear region. For the 16-bin and 8-bin curves,
there were four and six points, respectively, in the linear
region. For the parameters used, the 32-bin resuit
corresponds to 3.67 loops, the 16-bin result corresponds to
5.13 loops, and the 8-bin result corresponds to 6.6 loops.
Coupled with the fact that the linear region for the 8-bin
graph was distinct and flat, this would lead us to expect that
the 8-bin result would represent the best estimate of the
entropy. This appears to be the case since Caputo and
Atten [11] report a lower bound on the entropy as
K,=09+01.

E. Mackey-Glass Equation

The Mackey—Gilass equation [ 18] is a delay-differential
equation which deals with a biological system. For the
system under study, we have chosen the delay =17. The
system was evolved numerically using an integration
interval of 0.05s, and samples were recorded every 400
iterations.

The results of the information vs. sequence length com-
putation exhibited less distinctive linear regions, especially
for the 32-bin partition. In fact, there was some bowing pre-
sent in all of the curves, although there was a reasonably
linear region in the 16-bin and 8-bin curves. The results are
in Table 1. The 20 % limit occurred after 8.20's, 13.20 s, and
20.20 s for the 32-bin, 16-bin, and 8-bin partitions, respec-
tively. The values for the entropy reported in the literature
are K=10.00525 4+ 0.0001 from Lyapunov exponent equiva-
lence [4], the lower bound K, =0.0042 +0.0002 [4]. We
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see that the result for the 8-bin partition is approaching the
correct value. The fact that the progression curves were
more bowed for the Mackey—Glass attractor than for the
previous attractors indicates that the sample interval was
probably not optimal, and this accounts for the results
being farther away from the reported values.

VI. CONCLUSIONS

The primary result of this research is the demonstration
that it is possible to calculate the metric entropy from the
fundamental definition. This can be accomplished for fine
partitions and long sequence lengths by using the parti-
tioning and sequence compression techniques described
in Section III. Further, there is a major benefit in this
approach because it requires less than some fixed amount of
memory, which is dependent only on the partition and the
number of starting points. The procedure developed here is
designed for use on time series data and should provide a
useful tool for determining whether experimental data is
chaotic.

The calculations of information vs. sequence length
presented in Sections IV and V exhibit progression curves
that provide a typical signature of a chaotic system, where
there is an initial steep rise in the graph, followed by a linear
region, with a final falloff toward the maximum information
state for a given number of starting points. The progression
curves are monotonically increasing while their slopes are
moenotonically decreasing. The results of these investiga-
tions have shown that if the entropy is calculated as the
slope approaches the 20% separation limit, then the values
derived reflect an upper bound to the true entropy. The
effect of partition selection is not as drastic as might be
expected, because too fine a partition causes the data to
reach the 20% separation limit before the long-time
limit has been reached. The most accurate results can be
discerned by selecting the partition (and time sampling
interval, if applicable) that produces the flattest linear
region and longest time limit at the 20% separation level.
The results are derived using only time series data, with no
dependence on the equations of motion, and the results
were favorable in comparison to those reported elsewhere.

The procedure for application to experimental data
would be to collect the data, select a partition, then
calculate the information vs sequence length graph and the
entropy for that partition. Observing the progression curve,
it would then be necessary to determine the acceptability of
the result based on the flatness of the linear region and the
length of time before the 20 % separation limit is reached. If
the length of time is not several times longer than a charac-
teristic tfime for the system, and if the initial steep rise over-
laps the falloff region, there are several possibile ways to
improve the results. One obvious posstbility is to choose a
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different partition. In some circumstances it may be possible
to vary the sampling interval. Finally, it may be necessary
to consider more data points over a longer period of
observation.

The results reported here considered one-dimensional
samples of the attractors. The computational approach is
easily extended to handle multi-dimensional data. Tt is also
possible to consider the entropy in a reconstruction of the
attractor (based on mutual information [19, 20], for
example). This can be accomplished by stepping through
the Bin[«] vector according to the desired reconstruction
scheme (in (7) and (8) take Bin[i+ 1] as Bin{i+ 7] and
choose t accordingly). Preliminary findings suggest that the
entropy may not vary much from that derived for the one-
dimensional samples, but more work must be completed
before that can be concluded. Finally, it may be possible to
extend the partitioning procedure with compactification
to calculate the Hausdorff or box counting dimension
efficiently [21].
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